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Abstract
Background Hospital-acquired influenza (HAI) is under-recognized despite its high morbidity and poor health 
outcomes. The early detection of HAI is crucial for curbing its transmission in hospital settings.

Aim This study aimed to investigate factors related to HAI, develop predictive models, and subsequently compare 
them to identify the best performing machine learning algorithm for predicting the occurrence of HAI.

Methods This retrospective observational study was conducted in 2022 and included 111 HAI and 73,748 non-HAI 
patients from the 2011–2012 and 2019–2020 influenza seasons. General characteristics, comorbidities, vital signs, 
laboratory and chest X-ray results, and room information within the electronic medical record were analysed. Logistic 
Regression (LR), Random Forest (RF), Extreme Gradient Boosting (XGB), and Artificial Neural Network (ANN) techniques 
were used to construct the predictive models. Employing randomized allocation, 80% of the dataset constituted the 
training set, and the remaining 20% comprised the test set. The performance of the developed models was assessed 
using metrics such as the area under the receiver operating characteristic curve (AUC), the count of false negatives 
(FN), and the determination of feature importance.

Results Patients with HAI demonstrated notable differences in general characteristics, comorbidities, vital signs, 
laboratory findings, chest X-ray result, and room status compared to non-HAI patients. Among the developed models, 
the RF model demonstrated the best performance taking into account both the AUC (83.3%) and the occurrence 
of FN (four). The most influential factors for prediction were staying in double rooms, followed by vital signs and 
laboratory results.

Conclusion This study revealed the characteristics of patients with HAI and emphasized the role of ventilation in 
reducing influenza incidence. These findings can aid hospitals in devising infection prevention strategies, and the 
application of machine learning-based predictive models especially RF can enable early intervention to mitigate the 
spread of influenza in healthcare settings.
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Background
Hospital-acquired influenza (HAI) is associated with 
significant morbidity and mortality, leading to extended 
hospital stays and increased medical costs. Studies have 
shown that a quarter of all influenza cases among hospi-
talized patients can be attributed to HAI [1]. Mortality 
rates range from 9% [1] to 18.8% [2], with a high preva-
lence of 39.2% in critically ill patients [3]. Nevertheless, 
most healthcare providers consider influenza a commu-
nity-acquired infection, and HAI is under-recognized 
because patients are discharged before being diagnosed 
with influenza due to the incubation period [4]. However, 
HAI patients have longer hospital and intensive care unit 
lengths of stay (LoS) [2–6] and higher mortality rates 
than community-acquired influenza (CAI) patients [2, 3, 
5, 7, 8]. In addition, the poor outcomes of HAI require 
medical resources that could be used to treat other 
patients.

Inpatients can acquire influenza through direct or 
indirect contact with infected family members, visitors, 
healthcare personnel, and fellow patients [9]. Multi-
occupancy rooms with an average of 4.2 beds per room 
are common in South Korea, constituting 77% of rooms 
in tertiary hospitals and 79% in general hospitals [10]. It 
is customary for family members or professional care-
givers to stay with patients in hospital rooms for care, 
and frequent visits are widespread. As a result, patients 
face an increased susceptibility to influenza infection in 
such environments. Additionally, influenza has an incu-
bation period and is most contagious for 3–4 days after 
symptom onset. Some individuals transmit the virus with 
minimal or no symptoms, leading to influenza outbreaks 
in hospital settings [11]. Therefore, it is crucial for clini-
cians to promptly identify influenza infections, regardless 
of whether patients exhibit symptoms, and to administer 
preventive care to infected patients.

Conversely, electronic medical record (EMR) integra-
tion into hospitals allows the real-time collection of a 
diverse range of patient data, facilitating machine learn-
ing (ML) algorithm applications in medical contexts for 
proactive prognosis and disease onset prediction [12–
21]. ML, a subset of artificial intelligence (AI), analyses 
historical datasets, creating predictive models from raw 
data to advance evidence-based medicine, including risk 
analysis, screening, prediction, and personalized care 
[20, 22]. ML algorithms reduce uncertainty and enhance 
clinical decision-making to improve patient outcomes 
and quality [17, 18]. Previous studies have successfully 
constructed prediction models for various conditions, 
such as acute graft-versus-host disease (GVDH) [12], 
recurrent clostridium difficile infection (rCDI) [21], sep-
sis [15, 16], and mortality risk [17, 19]. To our knowledge, 
no studies have been conducted on developing predictive 
models for HAI.

This study aimed to investigate the key factors associ-
ated with HAI. Subsequently, the essential features were 
identified and utilized as inputs for four distinct ML 
algorithms in developing predictive models. Finally, the 
performance of the models was assessed and compared, 
leading to the identification of the most effective ML 
algorithm for accurately predicting HAI occurrence.

Methods
Study design and setting
This was a retrospective, observational, single-centre 
study using EMR data. The dataset was obtained from 
the Yonsei University Health System, a tertiary teaching 
hospital in Seoul, South Korea. The study was conducted 
in 2022 and encompassed the influenza seasons spanning 
from 2011 to 2012 to 2019–2020, covering the months 
from October to April of the subsequent year. The exclu-
sion of March and April 2020 from the 2019–2020 season 
was justified by the onset of the COVID-19 pandemic in 
March 2020.

Study population
The sample consisted of patients aged 19 years and older, 
who had stayed in the general adult wards for more than 
four days. Patients solely diagnosed with influenza and 
showing a positive polymerase chain reaction (PCR) test 
within four days of admission were excluded because of 
their classification as cases of CAI infections. Patients 
who had undergone surgery during admission were also 
excluded. In total, 189,321 patients were included in the 
study, comprising 117 HAI patients and 182,204 non-
HAI patients (Fig. 1). Patients with negative PCR results 
were typically categorized as non-HAI cases. However, 
given that these individuals underwent testing because 
they exhibited symptoms and considering the inherent 
non-100% accuracy of the test, it is possible that some of 
them could indeed be HAI cases. To mitigate this uncer-
tainty, patients were excluded from the analysis to pre-
vent any potentially skewed impact on the training of the 
predictive model.

Outcome and predictor variables
The outcome variable was the presence of HAI. HAI 
patients were defined as those with a positive result from 
an influenza A or B PCR test conducted more than four 
days after admission. Patients who did not undergo PCR 
were categorized as non-HAI.

The predictor variables were chosen based on an exten-
sive literature review, considering the factors influencing 
influenza. General characteristics included sex [23], age 
[1, 3, 8, 23–30], body mass index (BMI) [11], pregnancy 
status [3, 11], smoking history (past or present) [31], 
immunosuppression status [1–4, 8, 23, 32], and corti-
costeroid use [33] (Appendix Table A.1). Comorbidities 
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were ascribed if patients had received diagnoses of diabe-
tes [2, 8, 9], obesity [11], heart disease [2, 8, 11, 23], liver 
disease [9, 11], renal disease [2, 8, 11, 32], hematologic 
disease [3, 11, 23], malignancy [1, 4, 9], organ transplan-
tation [1], asthma [11], or chronic obstructive pulmonary 
disease (COPD) [8, 9, 11, 32] before the index date. This 
study applied the method of means and changes from 
previous values [34] to transform vital signs, including 
body temperature (BT), heart rate (HR), respiration rate 
(RR), systolic blood pressure (SBP), and diastolic blood 
pressure (DBP) [35].

Laboratory results [23] and haematological inflamma-
tory parameters, specifically the neutrophil-to-lympho-
cyte ratio (NLR), platelet-to-neutrophil ratio (PNR), and 
platelet-to-lymphocyte ratio (PLR) [36], were included. 
The radiological results consisted of selected chest X-ray 
findings [23]. Patient rooms and units were included as 
factors because the type of hospital room [24, 37] and 
sharing a room or unit with an influenza patient [9, 38] 
are risk factors for HAI infection.

The observation period for each patient spanned four 
days before the index date, considering the incubation 
period of influenza [39]. The index date corresponded to 
the PCR test date [32, 35], except for patients who did not 
undergo PCR testing, for whom the index date was estab-
lished on the fifth day after admission.

Data preparation
Among these were no laboratory results for 108,590 
patients, while 205 had missing smoking or BMI infor-
mation, and 11 had no diagnostic information. Finally, 
108,806 patients were excluded (Fig. 1). This resulted in 
the remaining 73,859 patients, of whom 111 exhibited 
HAI. In cases where certain laboratory test results were 
missing, the following approach was adopted despite 

the presence of other results. Due to an absence rate of 
80.8% among the patients, the direct bilirubin variable 
was removed. For other laboratory results, the miss-
ing rates were less than 5%, including calcium (4.6%), 
total bilirubin (3.7%), alanine transaminase (ALT; 2%), 
albumin (1.1%), aspartate transaminase (AST; 0.9%), 
blood urea nitrogen (BUN; 0.4%), creatinine (0.3%), and 
CO2 (0.02%). Consequently, imputation was employed 
to address missing data for laboratory test variables. 
The absence of laboratory test results indicated that the 
attending physician did not consider the test necessary 
for the patient; therefore, missing laboratory test results 
were not considered abnormal [40]. Continuous labora-
tory variables were imputed using the median values 
within the normal range.

Of the 73,859 patients included in this study, only 111 
(0.15%) were diagnosed with HAI, which resulted in an 
unbalanced dataset. Imbalanced classes are common 
in real-world healthcare data and can diminish the pre-
dictive efficacy of models [41]. To address this issue, a 
synthetic minority oversampling technique (SMOTE) 
was employed, which involves generating new and rea-
sonably accurate data based on existing minority cases 
[41]. SMOTE generates data by computing the Euclidean 
distance between any two randomly selected k-nearest 
neighbours (KNN) from two minority samples and creat-
ing new data points along the line connecting them [41].

Feature selection
Feature selection is a prevalent technique in forecast-
ing, pattern recognition, and classification modelling, 
designed to reduce the dimensionality and complexity 
of datasets by eliminating irrelevant and redundant fea-
tures [42]. Various methods, including Information Gain-
Ratio Attribute Evaluation (GA), Forward Elimination, 

Fig. 1 Study sample selection. HAI Hospital-acquired influenza, PCR Polymerase chain reaction, BMI Body mass index
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Backward Elimination, and One Rule Attribute Evalu-
ation (ORAE), have been proposed for selecting perti-
nent features in predictive modelling [43]. In this study, 
we employed RFECV (Recursive Feature Elimination 
with Cross-Validation), a form of Backward Elimination, 
utilising a random forest classifier as the estimator with 
accuracy as the scoring metric, for feature selection. As 
a result, the following 36 variables were retained, encom-
passing features such as age, sex, BMI, malignancy, BT, 
HR, RR, SBP, DBP, red blood cell (RBC), haemoglobin 
(Hb), white blood cell (WBC), platelet, haematocrit, 
RDW, delta neutrophil index (DNI), neutrophil, lympho-
cyte, NLR, PNR, PLR, sodium, potassium, chloride (Cl), 
CO2, calcium, albumin, total bilirubin, BUN, creatinine, 
ALT, AST, normal chest X-ray, abnormal chest X-ray, 
multi-occupancy room, and double room (variables 
marked with an asterisk in Appendix Table A.1).

Model development
After processing the raw data, 53 variables were cat-
egorized into seven groups (see Appendix Table A.1). 
Descriptive and univariate analyses were performed to 
determine the characteristics and factors associated with 
HAI. Chi-square and t-tests were used to analysed cat-
egorical and continuous variables, respectively.

To develop prediction models for HAI, a combination 
of ML classification methods, including Random Forest 
(RF), Extreme Gradient Boosting (XGB), Artificial Neu-
ral Networks (ANN), and Logistic Regression (LR), was 
employed with the selected 36 variables. LR, widely uti-
lized for predicting patient outcomes, such as mortality 
or disease onset, was juxtaposed with ML methods in 
healthcare data analysis studies [16]. RF is an ensemble 
model of decision trees that amalgamates multiple weak 
classifier models into a robust model that outperforms 
individual components [44]. Decision-tree algorithms 
can be sensitive to minor cases in datasets; however, RF 
mitigates this by aggregating the outcomes of various 
decision trees [45]. Despite their longer training times, 
straightforward ensemble models exhibit noteworthy 
performance [44, 46]. XGB builds on the gradient boost-
ing model, known for its reliability but has a prolonged 
training period. XGB considerably reduces this training 
duration, rendering it one of the most advanced super-
vised ML algorithms and faster than other ensemble 
classifiers [44]. ANNs possess significant predictive capa-
bility among classification algorithms and are extensively 
employed. The transparency and interpretability of mod-
els hold significance within healthcare [16] to explicate 
the rationale underlying outcomes. Despite their limita-
tions in interpretability, ANNs have demonstrated robust 
predictive properties.

Five-fold grid search cross-validation (GSCV) was per-
formed on the training set. GSCV identifies the optimal 

combination of hyperparameters that enhances model 
performance while preventing overfitting [44]. The opti-
mized hyperparameters for each ML model examined in 
this study were as follows. The RF model featured a max-
imum depth of 20  m, a minimum of two sample splits, 
and 100 n estimators. The XGB model had a maximum 
depth of 5, a learning rate of 0.2, a subsample of 0.75, and 
10 n estimators. The ANN model comprised 50 and 100 
activation-rectified linear units, a hidden layer size of 50, 
a learning rate of 0.005, and an Adam solver.

Model evaluation
It is imperative that the models not be trained or evalu-
ated using the same dataset to ascertain their accuracy 
[47]. In this study, 80% of the dataset was randomly 
assigned to the training set, and the remaining 20% was 
assigned to the test set. No variables showed signifi-
cant differences between the training and test sets (see 
Appendix Table A.2). The assessment of the discrimi-
natory ability of a classification model involves metrics 
such as accuracy, sensitivity, specificity, and area under 
the receiver operating characteristic curve (AUC) [48]. 
In this study, particular emphasis was placed on the AUC 
and the number of false negatives (FN). AUC, the most 
commonly used metric for evaluating prediction mod-
els and FN count, is crucial in healthcare as it signifies 
untreated patients potentially spreading the virus and is 
deemed paramount. In addition, SHAP (SHapley Addi-
tive exPlanations) was employed to assess feature impor-
tance by utilizing Shapley values [49]. This methodology 
considers contributions across all possible combinations 
for fair attribution, accommodating feature interactions 
and enabling a more accurate evaluation of individual 
feature importance [49]. SHAP is versatile, applicable to 
diverse machine learning models, including regression, 
classification, and ensemble models. Visualized through 
a dot plot, the results depict Shapley values for each fea-
ture, offering an intuitive understanding of their impact 
on model predictions. Positive values indicate contribu-
tions that increase predictions, while negative values 
suggest contributions that decrease predictions. This 
analysis provides clear insights into the most influential 
features, contributing valuable information for a quan-
titative interpretation of the model’s feature importance 
[49].

Data analysis was performed using SQL Server Man-
agement Studio v18.10 (Microsoft, Seattle, US) and 
Python 3.5. SQL was used to integrate, preprocess, and 
transform the data. Python was used for the univariate 
analyses and ML.

Ethical considerations
This study was approved by the Yonsei Univer-
sity Health System Institutional Review Board (IRB 
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No. 4-2021-1252) and Data Review Board (DRB No. 
2,021,300,331). After obtaining approval, the data were 
extracted and anonymized by authorized personnel from 
the hospital’s records management department before 
being sent to the researcher.

Results
Characteristics of HAI patients
Table  1 presents an overview of the characteristics of 
the HAI patients. Patients with HAI exhibited an aver-
age LoS of 12.5 days (SD = 10.9 days) at the time of PCR 
testing. Their total LoS significantly exceeded that of 
the non-HAI patients (p < 0.001). Patients with HAI 
were also older (p < 0.001) and had higher immunosup-
pression and corticosteroid use rates (both p < 0.001). 
Significant differences were observed in the prevalence 
of diabetes (p < 0.001), heart disease (p < 0.001), renal 
disease (p < 0.001), haematological disease (p = 0.037), 
asthma (p < 0.001), and COPD (p < 0.001). Additionally, 
patients with HAI exhibited greater variations in BT, HR, 
SBP, and DBP than non-HAI patients.

In terms of laboratory results, HAI patients had lower 
RBC counts, Hb levels, platelet counts, haematocrit 
levels, and lymphocyte counts (all p < 0.001). In con-
trast, RDW, DNI, and PLR were higher in HAI patients 
(p = 0.007, p = 0.02, and p = 0.04, respectively). Sodium, 
potassium, Cl, calcium, albumin, and total bilirubin 
levels were lower in patients with HAI. Conversely, 
HAI patients had higher BUN levels (p = 0.024). More 
HAI patients showed abnormal chest X-ray findings 
(p < 0.001) and had higher rates of co-location with influ-
enza patients in the same room, unit, and double room 
(all p < 0.001) than non-HAI patients.

Prediction model development
Prediction models were developed using the LR, RF, 
XGB, and ANN ML techniques. The LR model had the 
highest AUC (86.6%), followed by RF (83.3%), ANN 
(74.9%), and XGB (75.2%) (Table 2). In addition, the RF 
model exhibited the lowest number of FN at four, fol-
lowed by LR (five), ANN (six), and XGB (eight). A visual 
representation of the receiver operating characteristics 
(ROC) curves and AUC values for all models is presented 
in Fig. 2.

The major results of the feature importance analysis 
using RF are shown in Fig.  3. The results of the feature 
importance analysis for LR, XGB and ANN are presented 
in Figures A.1, A.2, and A.3 in the Appendix. Occupying 
a double room ranked the highest among the significant 
factors, followed by the DNI, malignancy, chest X-ray 
findings, and BT. Notably, all five vital sign attributes 
(BT, DBP, SBP, HR and RR) and ten laboratory variables 
(DNI, lymphocyte, AST, Hb, potassium, platelet, RDW, 

albumin, PLR, and Cl) were among the top 20 most influ-
ential factors.

Discussion
Characteristics of HAI patients
In this study, patients with HAI underwent PCR test-
ing on average 12.5 days after admission, which aligned 
with the findings of Bischoff et al. [35] at 12.4 days. This 
implies an elevated vulnerability to HAI infection with 
prolonged hospital stay. In addition, HAI patients had an 
average LoS that exceeded that of non-HAI patients by 
14.5 days. Similarly, studies have reported longer hospi-
tal stays for HAI patients than non-HAI patients [23] and 
patients [2–4, 35].

Most studies concentrated on contrasting HAI patients 
with CAI rather than non-HAI patients. Nevertheless, 
the outcomes of the present study align closely with the 
findings of those investigations. HAI patients were, on 
average, older than non-HAI patients [1, 3, 8, 35]. Fur-
thermore, patients with HAI demonstrate an increased 
likelihood of immunosuppression [1–4, 8, 23, 32, 50], dia-
betes [8, 9], heart disease [2, 8, 23, 32], renal disease [2, 8, 
32], hematologic disease [3], and COPD [32].

This study revealed that patients with HAI displayed 
higher variations from the preceding 24-hour average in 
BT, HR, SBP, and DBP than non-HAI. Notably, Bischoff 
et al. [35], who compared HAI and CAI patients, found 
no similar distinctions. This disparity can be attributed 
to using raw values in their study. Conversely, Churpek et 
al. [34] emphasized the importance of variations in vital 
signs rather than their absolute values. Considering the 
limited exploration of the connection between vital signs 
and HAI, further investigation is warranted.

Regarding haematological parameters, HAI patients 
exhibited lower RBC, Hb, platelet, haematocrit, and lym-
phocyte counts, while RDW, DNI, and PLR were elevated 
compared with non-HAI patients. These findings align 
with those of Yang et al. [23], particularly in the case of 
lymphocyte counts, although disparities were observed 
in Hb and platelet counts. Our findings for RBC, Hb, 
platelets, lymphocytes, RDW, and PLR closely resembled 
those of Han et al.’s investigation [36], which involved 
comparing influenza patients and healthy individuals.

Han et al. [36] reported reduced platelet levels in an 
influenza infection group compared with healthy and 
negative control groups. The negative control group 
experienced respiratory symptoms but tested negative 
for influenza or bacterial infection. Interestingly, the 
platelet counts in the influenza group returned to nor-
mal upon recovery. In addition to their role in coagula-
tion, platelets are recognized as significant inflammatory 
cells [51]. Influenza viruses can increase platelet activa-
tion [51], decreasing platelet counts [36]. Consequently, a 
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Variable Total
(n = 73,859)

Non-HAI
(n = 73,748)

HAI
(n = 111)

t or χ2 p-value

General characteristics
LoS at PCR testing, days, mean (SD) - - 12.5 (10.9) - -
Total LoS,
days, mean (SD)

12.5 (15.3) 12.5 (15.3) 27.0 (23.1) -6.641 < 0.001 ***

Age,
years, mean (SD)

58.7 (16.1) 58.7 (16.1) 68.8 (13.0) -8.220 < 0.001 ***

Sex, male, n (%) 40,588 (55.0) 40,529 (55.0) 59 (53.2) 0.082 0.775
BMI, mean (SD) 23.0 (3.6) 23.0 (3.6) 22.9 (4.5) 0.332 0.740
Pregnant, n (%) 716 (1.0) 716 (1.0) 0 (0.0) 0.312 0.577
Ex-smoker, n (%) 15,161 (20.5) 15,135 (20.5) 26 (23.4) 0.408 0.523
Current smoker,
n (%)

9,928 (13.4) 9919 (13.4) 9 (8.1) 2.278 0.131

Immunosuppressed,
n (%)

19,543 (26.5) 19,495 (26.4) 48 (43.2) 15.240 < 0.001 ***

Corticosteroid use,
n (%)

25,035 (33.9) 24,972 (33.9) 63 (56.8) 24.918 < 0.001 ***

Comorbidities, n (%)
Diabetes 4,653 (6.3) 4,635 (6.3) 18 (16.2) 16.875 < 0.001 ***

Obesity 35 (0.0) 35 (0.0) 0 (0.0) 0.000 1
Heart disease 8,207 (11.1) 8,176 (11.1) 31 (27.9) 30.146 < 0.001 ***

Liver disease 4,825 (6.5) 4,816 (6.5) 9 (8.1) 0.230 0.631
Renal disease 9,104 (12.3) 9,074 (12.3) 30 (27.0) 20.890 < 0.001 ***

Hematologic disease 4,733 (6.4) 4,720 (6.4) 13 (11.7) 4.366 0.037 *

Malignancy 37,214 (50.4) 37,166 (50.4) 48 (43.2) 1.991 0.158
Organ transplantation 3,600 (4.9) 3,596 (4.9) 4 (3.6) 0.161 0.688
Asthma 926 (1.3) 915 (1.2) 11 (9.9) 60.462 < 0.001 ***

COPD 1,095 (1.5) 1,081 (1.5) 14 (12.6) 86.809 < 0.001 ***

Vital signs, mean (SD)
Largest variation for BT, ºC 0.8 (0.4) 0.8 (0.4) 1.0 (0.4) -6.117 < 0.001 ***

Largest variation for
HR, beats/m

16.4 (10.1) 16.4 (10.1) 19.3 (10.5) -3.082 0.002 **

Largest variation for
RR, beats/m

2.4 (4.3) 2.4 (4.3) 2.4 (2.8) -0.033 0.741

Largest variation for
SBP (mmHg)

23.1 (12.6) 23.1 (12.6) 27.4 (12.5) -3.610 < 0.001 ***

Largest variation for
DBP (mmHg)

16.5 (8.4) 16.5 (8.4) 19.1 (8.5) -3.340 < 0.001 ***

Laboratory test results, mean (SD)
RBC count (103/Μl) 3.7 (0.7) 3.7 (0.7) 3.3 (0.7) 5.431 < 0.001 ***

Hb (g/Dl) 11.3 (2.0) 11.3 (2.0) 10.2 (1.9) 5.723 < 0.001 ***

WBC count (103/Μl) 7.6 (4.5) 7.6 (4.5) 6.9 (4.6) 1.571 0.116
Platelet count (103/Μl) 221.0 (108.6) 221.0 (108.6) 184.8 (102.5) 3.509 < 0.001 ***

Haematocrit (%) 33.7 (5.8) 33.7 (5.8) 30.5 (5.8) 5.864 < 0.001 ***

RDW (%) 14.6 (2.2) 14.6 (2.2) 15.2 (2.3) -2.703 0.007 **

DNI (%) 1.4 (3.2) 1.4 (3.2) 1.9 (2.0) -2.366 0.020 *

Neutrophil count (103/Μl) 5.5 (4.1) 5.5 (4.1) 5.0 (3.4) 1.624 0.107
Lymphocyte count (103/Μl) 1.3 (0.7) 1.3 (0.7) 0.9 (0.6) 6.711 < 0.001 ***

NLR 7.1 (48.2) 7.1 (48.2) 8.7 (9.3) -1.797 0.075
PNR 58.8 (145.5) 58.8 (144.7) 102.6 (427.0) -1.080 0.283
PLR 237.8 (356.5) 237.6 (356.2) 329.8 (468.0) -2.073 0.040 *

Sodium (mmol/L) 138.9 (3.9) 138.9 (3.9) 137.8 (4.5) 2.679 0.009 ***

Potassium (mmol/L) 4.0 (0.5) 4.0 (0.5) 3.8 (0.5) 4.370 < 0.001 ***

Cl (mmol/L) 102.7 (4.4) 102.8 (4.4) 101.1 (5.0) 3.420 < 0.001 ***

CO2 (mmol/L) 23.8 (3.3) 23.8 (3.3) 23.6 (3.6) 0.729 0.466

Table 1 Characteristics of HAI and non-HAI patients
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diminished platelet count could serve as a distinguishing 
factor for influenza infection from other infections [36].

Other haematological inflammatory markers, such 
as neutrophil and WBC counts, were higher in influ-
enza patients than in healthy individuals; however, 

these counts were lower than those observed in patients 
infected with bacteria [36]. These consistent findings cor-
respond with our non-significant results, which parallel 
the findings of Yang et al. [23]. This suggests that neutro-
phil and WBC counts may exhibit greater variability than 
platelet counts between individuals with and without 
influenza infections in contrast to platelet counts [36]. 
Moreover, the PLR yielded a significant result among 
the various blood cell indices, while the PNR and NLR 
did not exhibit significance in our study. Given that both 
PNR and NLR involve neutrophil counts, which were also 
non-significant, further research is warranted to explore 
the diverse associations of haematological parameters 
with patient conditions.

In this study, all HAI patients underwent chest X-rays, 
compared to 90.9% of the non-HAI patients. Among the 
HAI patients, 91% exhibited abnormal findings, whereas 
only 56.9% of the non-HAI patients did so. Similarly, 
Yang et al. [23] noted an elevated incidence of pleu-
ral effusion in chest X-ray results of HAI patients. This 
underscores the increased susceptibility of individuals 
with anomalous chest X-ray findings to HAI.

Table 2 Model evaluation results
Model AUC (%) Sensitivity Specificity Accuracy F1 Score TP (n) TN (n) FP (n) FN (n)
LR 86.6 0.77 0.79 79.1 1.1 17 11,671 3,079 5
RF 83.3 0.82 0.82 82.2. 1.3 18 12,119 2,631 4
XGB 74.9 0.73 0.73 72.9 0.8 16 10,747 4,003 6
ANN 75.2 0.64 0.70 70.0 0.6 14 10,320 4,430 8
LR Logistic Regression, RF Random Forest, XGB Extreme Gradient Boosting, ANN Artificial Neural Network, AUC Area under the receiver operating characteristics 
curve, TP True positive, TN True negative, FP False positive, FN False negative

Fig. 2 ROC curves and AUCs. LR Logistic Regression, RF Random Forest, 
XGB Extreme Gradient Boosting, ANN Artificial Neural Network

 

Variable Total
(n = 73,859)

Non-HAI
(n = 73,748)

HAI
(n = 111)

t or χ2 p-value

Calcium (mmol/L) 8.5 (0.7) 8.5 (0.7) 8.2 (0.8) 4.236 < 0.001 ***

Albumin (mmol/L) 3.4 (0.6) 3.4 (0.6) 3.0 (0.6) 5.912 < 0.001 ***

Total bilirubin (mmol/L) 1.0 (1.9) 1.0 (1.9) 0.8 (1.0) 2.227 0.028 *

BUN (mg/Dl) 17.3 (13.5) 17.3 (13.5) 21.0 (16.8) -2.296 0.024 *

Creatinine (mg/Dl) 1.1 (1.3) 1.1 (1.3) 1.3 (1.3) -1.540 0.124
ALT (mmol/L) 36 (98.9) 36 (99) 33.8 (55.6) 0.398 0.692
AST (mmol/L) 41.4 (163.4) 41.4 (163.4) 45.6 (101.8) -0.423 0.673
Radiology test result, n (%)
Chest X-ray, Normal 25,121 (34) 25,111 (34) 10 (9.0)
Abnormal 42,027 (56.9) 41,926 (56.9) 101 (91.0)
None 6,711 (9.1) 6,711 (9.1) 0 (0) 53.237 < 0.001 ***

Room status, n (%)
Same room 1,542 (2.1) 1,526 (2.1) 16 (14.4) 76.703 < 0.001 ***

Same unit 9,146 (12.4) 9,095 (12.3) 51 (45.9) 112.340 < 0.001 ***

Multi-occupancy room 64,858 (87.8) 64,763 (87.8) 95 (85.6) 0.328 0.567
Double room 35,534 (48.1) 35,508 (48.1) 26 (23.4) 26.158 < 0.001 ***

* p-value ≤ 0.05, **p-value ≤ 0.01, ***p-value ≤ 0.001

LoS Length of stay, PCR Polymerase chain reaction, COPD Chronic obstructive pulmonary disease, BT Body temperature, HR Heart rate, RR Respiration rate, SBP 
Systolic blood pressure, DBP Diastolic blood pressure, RBC Red blood cell, Hb Haemoglobin, WBC White blood cell, RDW Red blood cell distribution width, DNI Delta 
neutrophil index, NLR Neutrophil-to-lymphocyte ratio, PNR Platelet-to-neutrophil ratio, PLR Platelet-to-lymphocyte ratio, Cl Chloride, BUN Blood urea nitrogen, ALT 
Alanine transaminase, AST Aspartate transaminase

Table 1 (continued) 
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A higher proportion of HAI patients occupied rooms 
or units shared with influenza patients than non-HAI 
patients. Furthermore, HAI was more prevalent in dou-
ble-occupied rooms, with no difference observed in 
multi-occupancy rooms. Multi-occupancy rooms are 
more congested than double-occupied rooms, increasing 
the presence of occupants, caregivers, visitors, and the 
risk of influenza infection. However, patients in double 
rooms consistently remained near potentially infected 
individuals, whereas those in multi-occupancy rooms 
maintained a greater distance. Although the recom-
mended 1.8-meter distance [11] from influenza patients 
was not met in either room type, patients in the double 
room could be more susceptible to droplet exposure. 
Frequent door openings in multi-occupancy rooms are 
likely to enhance ventilation, particularly during months 
when windows are unlikely to open, a trend indicated by 
influenza peak seasons. Wong et al. [52] and Xiao et al. 
[53] emphasized the importance of aerosol transmission 
and its critical role in influenza transmission. This study 
highlights the importance of aerosols and clarifies why 
influenza infection was associated with a stay in double 
rooms, whereas a stay in multi-occupancy rooms was 
not.

Identifying disparities in the characteristics of HAI and 
non-HAI patients presents a challenge because of their 
shared severe medical conditions that necessitate hos-
pitalization. Nonetheless, this study successfully identi-
fied the differentiating characteristics between the two 
groups. Hospitals can employ these insights to formu-
late infection prevention strategies to mitigate influenza 
transmission in healthcare facilities.

HAI prediction model
This study represents a pioneering effort to develop a 
HAI prediction model by applying ML techniques. Both 
the LR (86.6%) and RF (83.3%) models demonstrated 
AUC exceeding 80%, with RF yielding the lowest FN 
count (four), followed by LR (five). Consequently, the 
RF model was the most suitable candidate for clinical 
implementation.

Notably, the most pivotal predictor of HAI was the 
occupation of double room. As discussed, patients resid-
ing in double rooms may face heightened susceptibility 
to aerosol-borne infections owing to their proximity to 
potential sources of infection and constrained ventilation 
in such settings. The second most influential feature was 
the DNI, which assumes special significance during the 
initial stages of infection. Overproduction of cytokines 
and chemokines during this period obstructs the migra-
tion of neutrophils to the infection site, releasing imma-
ture neutrophils into the bloodstream, a phenomenon 
termed left-shifting [54]. DNI, which represents the pro-
portion of immature granulocytes among neutrophils in 
the peripheral circulation, increases in left-shifting cases 
[55]. The DNI has demonstrated superior predictive 
capacity for infections and prognosis compared to WBC, 
C-reactive protein, or neutrophil counts [56]. As the DNI 
effectively discriminates between low-grade community-
acquired pneumonia and common colds [56], its signifi-
cance in predicting HAI was reaffirmed in this study.

Patients with HAI showed more variation in BT, HR, 
SBP, and DBP than non-HAI patients. All five vital signs 
are ranked within the top 14 predictors. This highlights 
the potential of predicting HAI infections. Vital signs are 
commonly used to predict clinical deterioration [34] and 
diseases such as acute GVHD [12] and sepsis [16]. This 
study reinforces the importance of vital signs in predict-
ing HAI.

This study underscores the importance of vital signs, 
diverse laboratory results, and chest X-ray findings in 
distinguishing between HAI and non-HAI patients for 
predicting HAI infections. Notably, sex, smoking status, 
immunosuppression, room allocation, and comorbidi-
ties exhibited relatively lower predictive values than vital 
signs, laboratory outcomes, and chest X-ray result, as 
indicated by the feature importance analysis. This sug-
gests that the latter group reflects immediate patient 

Fig. 3 Results of the analysis on feature importance using RF. DNI Delta 
neutrophil index, BT Body temperature, AST Aspartate transaminase, DBP 
Diastolic blood pressure, Hb Haemoglobin, SBP Systolic blood pressure, HR 
Heart rate, RR Respiration rate, RDW Red blood cell distribution width, PLR 
Platelet-to-lymphocyte ratio, Cl Chloride
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conditions, whereas the demographic and medical his-
tory variables may not have the same predictive power. 
Additionally, these variables were observed during the 
incubation period, implying that changes in vital signs, 
laboratory findings, and chest X-ray results could mani-
fest even before the onset of typical influenza-like symp-
toms in patients with influenza. This highlights the 
potential of immediate patient conditions during the 
incubation period to offer predictive insights before the 
emergence of typical influenza-like symptoms.

Limitations
This study had several limitations. First, its single-cen-
tre nature at a tertiary teaching hospital raises concerns 
about generalizability, necessitating broader hospital 
settings for validation. The imbalanced dataset propor-
tions (HAI patients at 0.15%) were addressed using the 
SMOTE method. Reliance on EMR from a single centre 
may not fully represent patients’ medical histories, focus-
ing on selected inpatient visits and omitting influenza 
vaccination and home medication data. This retrospec-
tive design hindered the inclusion of healthcare provider, 
caregiver, and visitor information in the context of influ-
enza transmission. This study explored only four ML 
techniques; however, broader methodological consider-
ations could enhance its applicability.

Conclusion
This study revealed the pivotal attributes, medical indi-
cators, subtle changes in vital signs, and laboratory out-
comes of patients with HAI. The critical role of effective 
ventilation in preventing hospital-acquired influenza has 
been underscored. These findings will enrich infection 
prevention strategies in healthcare settings. Furthermore, 
predictive models offer prospects for pre-emptive inter-
ventions to curb influenza dissemination within hospital 
settings.
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